AUTOMATED TESTING WITHACTS AND A MODEL CHECKER

This tutorial provides a step-by-step introductiormutomated generation of tests that provide
combinatorial coverage. Procedures introducedistutorial will produce a set of complete tests,
input values with the expected output for eaclosétputs. A “cookbook” style is used in the tusdr
to keep the description concise, so it may nonbgtively obvious why certain steps are used. ther
theory behind the processes introduced in this mec, please see papers on the ACTS web site
(http://csre.nist.gov/acts). For questions on thtsrial, contact Rick Kuhn, kuhn@nist.gov.

To apply the methods described here you will need:

e The ACTS covering array generator and NuSMV motecker. ACTS is a free, open source
tool developed by NIST and the University of TeRaéngton. ACTS is written in Java and
can run in any OS with Java support. NuSMV, aardrof the original SMV model checker, is
also freely available and was developed by Carnléigidon University, Istituto per la Ricerca
Scientifica e Tecnolgica (IRST), U. of Genova, &hdf Trento. NuSMV can be installed on
either UNIX/Linux or Windows systems running Cygwihinks and instructions for
downloading these tools are included in the appendi

e Aformal or semi-formal specification of the systemsubsystem under test (SUT). This can
be in the form of a formal logic specification, lstidte transition tables, decision tables, pseudo-
code, or structured natural language can also é@, as long as you can write SMV code that
matches the specification. The SMV code providpeeaise, machine-processable set of rules
that can be used to generate tests.

e An enumeration of values for each of the input peaters to be used in tests. The number of
values per parameter should be limited to no nmoae 8 to 10. In most cases this will require
establishing equivalence classes of parameter valber example, values for an account
balance may be 0, 1, 500, and 999999999 (or whaigtee maximum decimal value).

1 Overview
To apply combinatorial testing, two tasks must eoanplished:

1. Find a set of tests that will cover &llvay combinations of parameter values. ACTS wellused
for this step. The covering array specifies tesadwhere each row of the array can be regarded as
a set of parameter values for an individual teSbllectively, the rows of the covering array cover
all t-way combinations of parameter values.

2. Determine what output should be produced by the 8ld€ach set of input parameter values. The
test data output from ACTS will be incorporatedi®MV specifications that can be processed by
the NuSMV model checker for this step. In mangesathe conversion to SMV will be
straightforward. The example in Section 2 illusgsaa simple conversion of rules in the form “if
condition thenaction” into the syntax used by the model checker. Mioelel checker will
instantiate the specification with parameter values) the covering array once for each test in the

AUTOMATED TESTING WITHACTS AND A MODEL CHECKER

covering array. The resulting specification islaaged against a claim that negates each possible
resultR; using a model checker, so that the model cheak®uates claims in the following form:
Ci=> R, whereC; is a set of parameter values in one row of theegoyg array in the formp, =

Vir & P2 =Vig & ... & pPn = Vin, @andR; is one of the possible results. The output of gep is a set of
counterexamples that show how the SUT can reactidiaed resulR; from a given set of inputs.

The example in the following sections illustrateswithese counterexamples are converted into
tests. (Other approaches — covered in other &lsofi to determining the correct output for each
test can also be used. For example, in some wasean run a model checker in simulation mode,
producing expected results directly rather thaough a counterexample. In this tutorial we adopt
a methodology that is consistent with mutation-dasst generation procedures.)

The completed tests can be used to validate cavpestition of the system for interaction
strengths up to some pre-determined Ieévédepending on the system type and level of effeet may
use want pairwise£2) or higher strength, up te6 way interactions. We do not claim this guaraste
correctness of the system, as there may be faittiggered only by interaction strengths greatanth
In addition, some of the parameters are likelyaweha large number of possible values, requiriag th
they be abstracted into equivalence classes.e lalistraction does not faithfully represent theeaof
values for a parameter, some flaws may not be tietdxy equivalence classes used.

2 Example

Here we present a small example of a very simptessccontrol system. The rules of the
system are a simplified multi-level security systgmen below, followed by a step-by-step
construction of tests using a fully automated pssce

Each subject (user) has a clearance levkland each file has a classification levell,
Levels are given as 0,1, or 2, which could repreimls such as Confidential, Secret, and Tope&ecr
Auser u can read a file fuf | > f | (the “no read up” rule), or write to a file ff | > u_| (the “no
write down” rule).

Thus a pseudo-code representation of the accet®lcanes is:

if u | >=f | &act =rd then GRANT;
elseif f I >=u_| & act = wr then GRANT,;
else DENY;

Tests produced will check that these rules areectiyrimplemented in a system.
3 SMV Mode

This system is easily modeled in SMV as a simple-$tate finite state machine. TBEART
state merely initializes the system (line 8, Figliyewith the rule above used to evaluate access as
eitherGRANTor DENY(lines 9-13). For example, line 9 representditiséline of the pseudo-code
above: in the current state (alw&FARTfor this simple model), ifi | > f | then the next state is
GRANT Each line of the case statement is examinedesdiglly, as in a conventional programming

2

AUTOMATED TESTING WITHACTS AND A MODEL CHECKER

language. Line 12 implements these DENY " rule, since the predicatd” is always true. SPEC
clauses given at the end of the model are simpgliéettions” that duplicate the access control rales
temporal logic statements. They are thus trivipigvable, but we are interested in using them to
generate tests rather than to prove propertidseofystem.

1. MODULE main

2. VAR

--Input parameters
3. ul: 0.2 -- user level
4. f1I. 0.2 -- file level
5. act: {rd,wr}; -- action

--output parameter
6. access: {START_, GRANT,DENY};

7. ASSIGN
8. init(access) := START_;
--if access is allowed under rules, then next state is GRANT

--else next state is DENY
9. next(access) := case

10. ul>=fl&act=rd: GRANT,;
11. f I>=u_| &act =wr: GRANT;
12. 1: DENY;

13. esac;

14. next(u_I) :=u_l;

15. next(f_I):=1f_I;

16. next(act) := act;

-- reflection of the assigns for access

-- if user level is at or above file level then rea dis OK
SPECAG ((u_I>=f | &act=rd) -> AX (access = G RANT));

-- if user level is at or below file level, then wr ite is OK
SPECAG ((f I>=u_l &act=wr) ->AX (access =G RANT));

-- if neither condition above is true, then DENY an y action
SPECAG (I((u_l>=fl&act=rd) | (fI>=u_l & act =wr))

-> AX (access = DENY));

Figure 1. SMV model of access control rules

Separate documentation on SMV should be consuttefully understand the syntax used, but
specifications of the formAG ((predicate 1) -> AX (predicate 2))” indicate essentially that for
all paths (the “A” in “AG”) for all states globall{the “G”), if predicate 1 holds then (> ") for all
paths, in the next state (the “X” in “AXpredicate 2 will hold. In the next section we will see how
this specification can be used to produce compéstis, with test data input and the expected odigput
each set of input data.

AUTOMATED TESTING WITHACTS AND A MODEL CHECKER

4 What Doesthe Moddel Checker Do?

Model checkers they can be used to perform atyapievaluable functions, because they make
it possible to evaluate whether certain propediestrue of the system model. Conceptually, thdeho
checker can be viewed as exploring all statessyiséeem model to determine if a property claimed in
SPEC statement is true. If the statement can &eedrtrue for the given model, the model checker
reports this fact. What makes a model checkeicogaitly valuable for many applications, though, is
that if the statement is false, the model checket only reports this, but also provides a
“counterexample” showing how the claim in the SPEtatement can be shown false. The
counterexample will include input data values arichee of system states that lead to a result agntr
to the SPEC claim (Figure 2).

~

The system can never Yes it can, and
get in this statel here's how ...
‘!'.

A\ ' S

Figure2. Inside a Model Checker

For advanced applications in test generation, dbismterexample generation capability is very
useful. In this tutorial, however, we will simplyse the model checker to determine whether a
particular input data set makes a SPEC claim trdalse. That is, we will enter claims that pautar
results can be reached for a given set of inpw glatues, and the model checker will tell us if the
claim is true or false. This gives us the abitiymatch every set of input test data with the ltebat
the system should produce for that input data.

The model checker thus automates the work thahalbyy must be done by a human tester —
determining what the correct output should be faheset of input data. In some cases, we may &ave
“reference implementation”, that is, an implemeotatof the functions that we are testing that is
assumed to be correct. This happens, for exarmptmnformance testing for protocols, where many
vendors implement their own software for the protand submit it to a test lab for comparison with
an existing implementation of the protocol. Irsthase the reference implementation could be used f
determining the expected output, instead of thegholecker. Of course before this can happen the
reference implementation itself must be thorougbsted before it can be used as the gold standard f
testing other products, so the method we describe may be needed to produce tests for the original
reference implementation.

AUTOMATED TESTING WITHACTS AND A MODEL CHECKER

5 NuSMV Output

Checking the properties in tIis®ECstatements shows that they match the access taores as
implemented in the FSM, as expected. In othedgdhe claims we made about the state machine in
the SPECclauses can be proven. This step is used to ¢chatkheSPECclaims are valid for the

model defined previously. If NUSMV is unable t@pe one of th&PEG, then either the spec or the
model is incorrect. This problem must be resolvefibre continuing with the test generation process.
Once the model is correct aB®ECclaims have been shown valid for the model, caenreamples can
be produced that will be turned into test cases.

*** This is NuSMV 2.4.3 (compiled on Tue May 22 14: 08:54 UTC 2007)
*** For more information on NuSMV see <http://nusmv Jrst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv@irst.itc.it>.

*** This version of NUSMV is linked to the MiniSat SAT solver.

*** See http://www.cs.chalmers.se/Cs/Research/Forma IMethods/MiniSat

*** Copyright (c) 2003-2005, Niklas Een, Niklas Sor ensson

-- specification AG ((u_I >=f | & act =rd) -> AX access = GRANT) is
true

-- specification AG ((f_| >=u_I & act =wr) -> AX access = GRANT) is
true

-- specification AG (I((u_Il >=f_ | & act=rd) | (f _I>=u_l&act=

wr)) -> AX access = DENY) is true

Figure3. NuSMV output
6 CoveringArray

We will compute covering arrays that givetallay combinations, with degree of interaction
coverage = 2 for this example. This section dessrthe use of ACTS as a standalone command line
tool, using a text file input. A GUI based versmiACTS can also be used. Procedures for doing so
are included in the Appendix. This example is $mabugh that the command line version is adequate
and easy to use. The first step is to define #rameters and their values in a system definifien f
that will be used as input to ACTS. Call this file.txt”, with the following format:

[System]
[Parameter]
ul:0,1,2
fl1.0,1,2
act: rd,wr
[Relation]
[Constraint]
[Misc]

AUTOMATED TESTING WITHACTS AND A MODEL CHECKER

For this application, thgParameter] section of the file is all that is needed. Ottagys refer to
advanced functions that will be explained in ottiecuments. After the system definition file is
saved, run ACTS as shown below:

java -Ddoi=2 -jar acts_1.0b6.jar ACTSin.txt

The “Ddoi=2 " argument sets the degree of interaction for theedng array that we want ACTS to
compute. In this case we are using simple 2-wagaowise, interactions. (For a system with more
parameters we would use a higher strength interadbut with only three parameters, 3-way
interaction would be equivalent to exhaustive teg)i ACTS produces the output shown in Figure 4.

Number of parameters: 3 Configuration #5:
Maximum number of values per 1=u_I=1
parameter: 3 2=11=1
Number of configurations: 9 3 = act=rd
Configuration #1: Configuration #6:
1=u_I=0 1=u_I=1
2=f1=0 2=f1=2
3 = act=rd 3 = act=wr
Configuration #2: Configuration #7
1=uI=0 1=u =2
2=f1=1 2=f1=0
3 = act=wr 3 = act=rd
Configuration #3: Configuration #8
1=u_I=0 1=u =2
2=f1=2 2=f1=1
3 = act=rd 3 = act=wr
Configuration #4: Configuration #9
l1=ul=1 1=u_I=2
2=11=0 2=11=2
3 = act=wr 3 = (don't care)

Figure4. ACTS output

Each test configuration defines a set of valuestferinput parameters u_|, f_I, and act. The
complete test set ensures that all 2-way combinsitod parameter values have been covered. If we
had a larger number of parameters, we could prothsteconfigurations that cover all 3-way, 4-way,
etc. combinations. ACTS may output “don’t caref §ome parameter values. This means that any

6

AUTOMATED TESTING WITHACTS AND A MODEL CHECKER

legitimate value for that parameter can be usedlaméull set of configurations will still coverlat
way combinations. Since “don’t care” is not noriyain acceptable input for programs being tested, a
random value for that parameter is substitutedrealsing the covering array to produce tests.

7 SPEC Claimswith Combinatorial Test ValuesInserted

The next step is to assign values from the coveamay to parameters used in the model. For
each test, we claim that the expected result willatcur. The model checker determines
combinations that would disprove these claims, wftitny these as counterexamples. Each
counterexample can then be converted to a testknitlvn expected result. (Note that the trivially
provable positive claims have been commented BHete we are concerned with producing
counterexamples.)

Recall the structure introduced in Sectiond=> ~R,. HereC; is the set of parameter values
from the covering array. For example, for confagion #1 in Section 6:

ul=0&fl=0&act=rd

As can be seen below, for each of the 9 configomatin the covering array (Section 6), we
create &PECclaim of the form:

SPEC AG((<covering array values>) -> AX !l(access = <result>));

This process is repeated for each possible resttijs case eitherGRANT or “DENY, so we
have 9 claims for each of the two results. The @hobecker is able to determine, using the model
defined in Section 3, which result is the corrant éor each set of input values, producing a toit&l
tests.

Excerpt:
-- reflection of the assign for access
--SPEC AG ((u_I >=f | & act=rd) -> AX (access = GRANT));
--SPEC AG ((f I >=u_l & act =wr) -> AX (access = GRANT));
-SPECAG (((u_l>=fl&act=rd) | (fl>=u_ & act=wr))

-> AX (access = DENY));

SPECAG((u_I=0&f =0 &act=rd) -> AX !(acce ss = GRANT));
SPECAG((u_I=0&f I=1&act=wr) -> AX I(acce ss = GRANT));
SPEC AG((u_I=0&f =2 &act =rd) -> AX !(acce ss = GRANT));
SPEC AG((u_I=1&f I=0 & act=wr) -> AX I(acce ss = GRANT));
SPECAG((u_I=1&f I=1&act=rd)-> AX !(acce ss = GRANT));
SPEC AG((u_Il=1&f I=2&act=wr) -> AX I(acce ss = GRANT));
SPEC AG((u_I=2&f I=0 &act =rd) -> AX !(acce ss = GRANT));
SPEC AG((u_I=2&f I=1 & act =wr) -> AX I(acce ss = GRANT));
SPECAG((u_I=2&f I=2 &act=rd) -> AX !(acce ss = GRANT));
SPECAG((u_I=0&f I=0&act=rd) -> AX !(acce ss = DENY));

7

AUTOMATED TESTING WITHACTS AND A MODEL CHECKER

SPEC AG((u_I=0&f I=1 & act =wr) -> AX I(acce ss = DENY));
SPEC AG((u_I=0&f I=2 &act =rd) -> AX !(acce ss = DENY));
SPEC AG((u_I=1&f I=0 & act =wr) -> AX I(acce ss = DENY));
SPECAG((u I=1&f I=1&act=rd) -> AX !(acce ss = DENY));
SPECAG((u_I=1&f I =2 &act=wr) -> AX I(acce ss = DENY));
SPECAG((u_I=2&f =0 &act=rd) -> AX !(acce ss = DENY));
SPECAG((u_I=2&f I=1&act=wr) -> AX I(acce ss = DENY));
SPECAG((u_I=2&f =2 &act=rd) -> AX !(acce ss = DENY));

8 Counterexamples

NuSMYV produces counterexamples where the inputegalvould disprove the claims specified
in the previous section. Each of these countergiesns thus a set of test data that would have the
expected result G(GRANTor DENY

For eaclSPECclaim, if this set of values cannot in fact leadfte particular resuR;, the
model checker indicates that this is true. Fonga, for the configuration below, the claim that
access will not be granted is true, because thésudearance leveu(1=0) is below the file’s level
(fl=2)

-- specification AG ((u_I=0&f |=2)&act=r d) -> AX !(access =

GRANT)) is true

If the claim is false, the model checker indicdtes and provides a trace of parameter input
values and states that will prove it is false efiect this is a complete test case, i.e., a spacdmeter
values and expected result. It is then simpleap these values into complete test cases in thaxsyn
needed for the system under test.

Excerpt from NuSMV output:

-- specification AG ((u_I=0&Tf 1=0)&act=r d) -> AX !(access =
GRANT)) is false
-- as demonstrated by the following execution seque nce

Trace Description: CTL Counterexample
Trace Type: Counterexample

-> State: 1.1 <-
ul=0
fl1=0
act=rd
access = START _
-> |nput: 1.2 <-
-> State: 1.2 <-

access = GRANT

The model checker finds that 6 of the input par@mebnfigurations produce a result of GRANT and 3
produce a DENY result, so at the completion of #tep we have successfully matched up each input
parameter configuration with the result that shdaddoroduced by the SUT.

AUTOMATED TESTING WITHACTS AND A MODEL CHECKER

9 Tedts

We now strip out the parameter names and valuesggiests that can be applied to the system
under test. This can be accomplished using atyasfenethods; a simple script used in this example
is given in the appendix. The tests produced laog/a below:

0&f I=0&act=rd->access = GRANT
0&f I=1&act=wr->access = GRANT
1&f 1=1&act=rd->access = GRANT
1&f =2 &act=wr->access = GRANT
2&f 1=0&act=rd->access = GRANT
2&f 1=2&act =rd ->access = GRANT
0&f |1=2&act=rd->access = DENY
1&f =0 &act=wr->access = DENY
2&f 1=1&act =wr->access = DENY

CCCCCCCCC

These test definitions can now be post-processed sanple scripts written in PERL, Python, or
similar tool to produce a test harness that wid@xe the SUT with each input and check the results
While tests for this trivial example could easigMe been constructed manually, the procedures
introduced in this tutorial can, and have, beemdsgroduce tens of thousands of complete tesiscas
in a few minutes, once the SMV model has been déffor the SUT.

APPENDI X
ACTS download and install

Email me if you don’t already have it (we like tedp track of the number of users; helps
maintain management support!): kuhn@nist.gov.

NuSMV download and install
http://nusmv.irst.itc.it/
Script to generatetestsfrom SMV output used in Section 9 for the example

Input: output file from NuSMV
Output: tests.txt file of test definitions debed in Section 9

produce tests from smv output

grep specification smvoutput | grep "is false" \
|sed 's/(/lg' | sed 's/)//g' >tests.txt

ex tests.txt <<END

:1,$ s/--*AG//

:1,$ sIAX U/

:1,$ slis false//

‘W

END

